The independent set sequence of regular bipartite graphs

نویسنده

  • David Galvin
چکیده

Let it(G) be the number of independent sets of size t in a graph G. Alavi, Erdős, Malde and Schwenk made the conjecture that if G is a tree then the independent set sequence {it(G)}t≥0 of G is unimodal; Levit and Mandrescu further conjectured that this should hold for all bipartite G. We consider the independent set sequence of finite regular bipartite graphs, and graphs obtained from these by percolation (independent deletion of edges). Using bounds on the independent set polynomial P (G,λ) := ∑ t≥0 it(G)λ t for these graphs, we obtain partial unimodality results in these cases. We then focus on the discrete hypercube Qd, the graph on vertex set {0, 1}d with two strings adjacent if they differ on exactly one coordinate. We obtain asymptotically tight estimates for it(d)(Qd) in the range t(d)/2 d−1 > 1− 1/ √ 2, and nearly matching upper and lower bounds otherwise. We use these estimates to obtain a stronger partial unimodality result for the independent set sequence of Qd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent domination in directed graphs

In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...

متن کامل

Some lower bounds for the $L$-intersection number of graphs

‎For a set of non-negative integers~$L$‎, ‎the $L$-intersection number of a graph is the smallest number~$l$ for which there is an assignment of subsets $A_v subseteq {1,dots‎, ‎l}$ to vertices $v$‎, ‎such that every two vertices $u,v$ are adjacent if and only if $|A_u cap A_v|in L$‎. ‎The bipartite $L$-intersection number is defined similarly when the conditions are considered only for the ver...

متن کامل

Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations

A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...

متن کامل

On the Number of Matchings in Regular Graphs

For the set of graphs with a given degree sequence, consisting of any number of 2s and 1s, and its subset of bipartite graphs, we characterize the optimal graphs who maximize and minimize the number of m-matchings. We find the expected value of the number of m-matchings of r-regular bipartite graphs on 2n vertices with respect to the two standard measures. We state and discuss the conjectured u...

متن کامل

On Minimum Feedback Vertex Sets in Bipartite Graphs and Degree-Constraint Graphs

We consider the minimum feedback vertex set problem for some bipartite graphs and degree-constrained graphs. We show that the problem is linear time solvable for bipartite permutation graphs and NP-hard for grid intersection graphs. We also show that the problem is solvable in O(n2 log6 n) time for n-vertex graphs with maximum degree at most three. key words: 3-regular graph, bipartite permutat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 312  شماره 

صفحات  -

تاریخ انتشار 2012